Monadic stability Mon	nadic NIP (Shelah) (Characterizations	Hereditary classes	Questions	References
0000 000	0000	000	00000	0	

Characterizations of monadic NIP

Samuel Braunfeld (Joint with Chris Laskowski)

University of Maryland, College Park

April 8, 2021

< □ > < @ > < E > < E > E のQ@

Monadic stability	Monadic NIP (Shelah)	Characterizations	Hereditary classes	Questions	References
0000	000000	000	00000	0	

- Monadic stability
- 2 Monadic NIP (Shelah)
- 3 Characterizations
- 4 Hereditary classes

Monadic stability	Monadic NIP (Shelah)	Characterizations	Hereditary classes	Questions	References
●000	000000	000	00000	0	

DEFINITION AND EXAMPLES

Definition

A theory *T* is *monadically stable/NIP* if any expansion of *T* by arbitrarily many unary predicates remains stable/NIP.

- Analysis of monadically stable theories is due to Baldwin and Shelah [1].
- Refining equivalence relations and mutually algebraic theories are monadically stable
- DLO and various tree-like theories are monadically NIP.
- Essentially anything with a non-unary function is not monadically NIP, e.g. vector spaces.

Monadic stability	Monadic NIP (Shelah)	Characterizations	Hereditary classes	Questions	References
0000	000000	000	00000	0	

CHARACTERIZATIONS

Theorem (Baldwin-Shelah [1])

The following are equivalent.

- *T* is monadically stable.
- 2 T is stable and monadically NIP.
- *T* is stable and does not admit coding.
- Models of T admit a nice decomposition into trees of countable models.
- *T* is stable and if $B \bigsqcup_D C$, then for any *a*, $aB \bigsqcup_D C$ or $B \bigsqcup_D aC$.

<ロト < 得ト < ヨト < ヨト = ヨ = のへの

Monadic stability Mon	adic NIP (Shelah)	Characterizations	Hereditary classes	Questions	References
0000 0000	0000	000	00000	0	

TREE DECOMPOSITIONS

Definition

A *tree decomposition* of *M* is a collection of countable submodels of *M*, indexed by a tree, such that

- $U M_i = M$
- **2** If i < j then $M_i \subset M_j$.
- The children of a model M_i are independent over M_i .
 - Example: An equivalence relation with κ classes of size λ .

500

• The children of M_i form a congruence over M_i .

Monadic stability	Monadic NIP (Shelah)	Characterizations	Hereditary classes	Questions	References
000●	000000	000	00000	0	

(NON-)FORKING

- Recall: *T* is stable and if $A \, \bigcup_D B$, then for any *c*, $cA \, \bigcup_D B$ or $A \, \bigcup_D Bc$.
- Equivalently, forking is trivial (i.e. if $A \not\perp_C B$, then $a \not\perp_C b$ for some $a \in A, b \in B$) and transitive on singletons.
- So forking defines an equivalence relation on singletons.
- Can use this equivalence relation to build the tree decomposition. (Or can use first characterization to iteratively extend by one point).

Given a *a*, *b*, *c* failing this property, take Morley sequences in *a* and *b* and automorphic images of *c* to get coding, as in vector spaces. (*c_{ij}* behaves non-generically over *a_ib_j*.)

Monadic stability	Monadic NIP (Shelah)	Characterizations	Hereditary classes	Questions	References
0000	●00000	000	00000	0	
0000	00000	000	00000	0	

Shelah's theorem

- Soon afterward, Shelah analyzed monadic NIP [4].
- Concerned with structure theory, since non-structure was clear in his setting.

Definition

Let $A
ightharpoint_{M}^{fs} B$ mean that tp(A/MB) is finitely satisfiable in M. Let $A
ightharpoint_{M \subset C}^{fs} B$ mean that tp(A/CB) is finitely satisfiable in M. A theory T has the f.s.-dichotomy if given $A
ightharpoint_{M}^{fs} B$, then for any c, $cA
ightharpoint_{M}^{fs} B$ or $A
ightharpoint_{M}^{fs} Bc$.

Theorem ([4])

If T does not have the f.s.-dichotomy, then T admits a pre-coding configuration, *and so is not monadically NIP. If T has the f.s.-dichotomy, then models of T admit a nice linear decomposition into substructures.*

0000 00000 000 000 0	Monadic stability	Monadic NIP (Shelah)	Characterizations	Hereditary classes	Questions	References
	0000	00000	000	00000	0	

THE F.S.-DICHOTOMY

- Recall: given $A \perp_M^{f_s} B$, then for any $c, cA \perp_M^{f_s} B$ or $A \perp_M^{f_s} Bc$.
- Implies dependence is trivial* and transitive on singletons.
- *: If $A \not \perp_{M}^{f_{s}} B$, then $A \not \perp_{M}^{f_{s}} b$ for some $b \in B$. If $C \supset M$ is *large* (i.e. realizes all types over M), and $A \not \perp_{M \subset C}^{f_{s}} B$, then $a \not \perp_{M \subset C}^{f_{s}} B$ for some $a \in A$.
- So if we work over a large $C \supset M$, dependence gives a quasi-order.
- Why do we need *C*? Stationarity: If $p \in S(C)$ is fin. sat. in *M*, then for any $D \supset C$ there is a unique extension *p* over *D* that is fin. sat. in *M*. (No assumption of f.s.-dichotomy.)

Monadic stability	Monadic NIP (Shelah)	Characterizations	Hereditary classes	Questions	References
0000	00000	000	00000	0	

M-F.S. SEQUENCES

Definition

Given a model *M*, $(a_i : i \in I)$ is an *M*-*f.s.* sequence if $a_i \bigcup_{M}^{f_s} \{a_{\leq i}\}$.

• Similar to Morley sequences. If also indiscernible, then a special case of Morley sequences.

Theorem (No assumption of f.s.-dichotomy)

Given an indiscernible sequence $\mathcal{I} \subset \mathfrak{C}$, we can find some model M so that \mathcal{I} is an M-f.s. sequence. Furthermore, we can find large $C \supset M$ so that \mathcal{I} remains indiscernible and M-f.s. over C.

• Finite satisfiability and *M*-f.s. sequences seem like useful notions in arbitrary theories.

Monadic stability	Monadic NIP (Shelah)	Characterizations	Hereditary classes	Questions	References
0000	000000	000	00000	0	

NON-STRUCTURE

- If the f.s.-dichotomy fails, we want a failure of monadic NIP.
- Given \bar{a}, \bar{b}, c, M failing the f.s.-dichotomy, extend $\bar{a}\bar{b}$ to an *M*-f.s. sequence over a large $C \supset M$.
- By automorphisms, for *i* < *j* find *c_{ij}* so tp(*ābc*) = tp(*ā_ib_jc_{ij}*) (so *c_{Ij}* is non-generic over *ā_ib_j*) but is reasonably generic over the rest of the sequence.
- This gives a *pre-coding configuration* as below.

Definition

A *pre-coding configuration* is an indiscernible sequence $(\bar{d}_i : i \in I)$ and formula $\phi(\bar{x}, \bar{y}, z)$ such that for every s < t, there is c_{st} satisfying the following.

- $\bullet \models \phi(\bar{d}_s, \bar{d}_t, c_{st})$
- $(\bar{d}_u, \bar{d}_t, c_{st}) \text{ for } u < s$
- $\, \textcircled{\ } \not\models \phi(\bar{d}_s, \bar{d}_v, c_{st}) \text{ for } t < v$

Monadic stability	Monadic NIP (Shelah)	Characterizations	Hereditary classes	Questions	References
0000	000000	000	00000	0	

NON-STRUCTURE CONTD.

- After Ramsey's theorem, combinatorial arguments give coding in a unary expansion.
- The unary expansion is used to "recover the rows" \overline{d}_i from the first element, so the tuples can be replaced by singletons.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

• Shelah's unary expansion is non-explicit.

Monadic stability	Monadic NIP (Shelah)	Characterizations	Hereditary classes	Questions	References
0000	00000	000	00000	0	

LINEAR DECOMPOSITIONS

Definition

A *linear decomposition* of *M* is a partition $M = \bigsqcup_i A_i$ and a model *N* (not necessarily in *M*) such that $(A_i : i \in I)$ is an *N*-f.s. sequence.

- From the f.s.-dichotomy, we can extend partial linear decompositions one point at a time.
- Example: DLO

- Somewhat like one step of the tree decomposition, although the parts are ordered.
- Linear decompositions give an *order-congruence* over any large $C \supset N$.

Monadic stability	Monadic NIP (Shelah)	Characterizations	Hereditary classes	Questions	References
0000	000000	●OO	00000	0	

MAIN THEOREM

Theorem (B, Laskowski)

The following are equivalent.

- *T* is monadically NIP.
- **2** *T* does not admit coding in a unary expansion.
- *T* does not admit a pre-coding configuration.
- *T* has the f.s.-dichotomy.
- Partial linear decompositions of models of T extend to full linear decompositions.
- **6** *T* is dp-minimal and indiscernible trivial.
 - From Shelah's results, we still need (5) ⇒ (1), and to show the equivalence with (6).
 - We also redo the non-structure part of Shelah's proof more carefully to get our result about finite structures.

Monadic stability
0000Monadic NIP (Shelah)
00000Characterizations
0Hereditary classes
00000QuestionsReferences000000000000

FROM DECOMPOSITIONS TO MONADIC NIP

- Given an indiscernible sequence *I* = (*a_i* : *i* ∈ *I*), we consider a partition of 𝔅 with each *a_i* in a different part.
- We choose a finite subset of that partition, and count the number of types realized over it.
- If *T* has IP, then by taking *I* sufficiently long and shattered, we must realize unboundedly many types.
- If *T* can extend *I* to a linear decomposition over *M*, then doing so will realize few types (□₂(ℵ₀)).
- This uses that each part is finitely satisfiable in *M*, so few types in each part, and the parts form an order-congruence.
- So few *quantifier-free* types realized in any monadic expansion of *T*.
- But we can bound the number of types realized in terms of the number of q.f.-types realized (by applying □_{ω+1}).
- This type-counting seems similar to linear clique width (cf [2]).

Monadic stability	Monadic NIP (Shelah)	Characterizations	Hereditary classes	Questions	References
0000	000000	00●	00000	0	

INDISCERNIBLES

Definition

T is *dp-minimal* if whenever \mathcal{I} is dense indiscernible, then \mathcal{I} splits into at most three parts indiscernible over a parameter *c*, with one part initial, one a singleton, and one terminal. *T* is *indiscernible trivial* if whenever \mathcal{I} is indiscernible over each $a \in A$, then \mathcal{I} is indiscernible over *A*.

- Thanks to Pierre Simon for suggesting this characterization.
- Example: DLO

- Fairly easy that if have these properties, then can't have a pre-coding configuration.
- If *T* is monadically NIP, linear decompositions show its models "look like DLO".

Monadic stability	Monadic NIP (Shelah)	Characterizations	Hereditary classes	Questions	References
0000	000000	000	00000 ·	0	

A DIVIDING LINE

- Monadic NIP should be a dividing line for several properties of hereditary classes.
- Should provide a general setting for decompositions as in structural graph theory.
- For example, see recent work on twin-width and ordered graph classes, where it coincides with monadic NIP [5].
- Also see work on sparse graph classes, started by Nešetril and Ossona de Mendez.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Monadic stability	Monadic NIP (Shelah)	Characterizations	Hereditary classes	Questions	References
0000	000000	000	00000	0	

A PICTURE OF GRAPH CLASSES [3]

Classes of graphs with low complexity

• "Structurally *P*" closes *P* under definability in unary expansions.

Monadic stability	Monadic NIP (Shelah)	Characterizations	Hereditary classes	Questions	References
0000	000000	000	00000	0	

Homogeneous structures

Definition

Given a structure *M*, the *growth rate* of *M* is a function $\varphi_M(n)$ counting the (unlabeled) isomorphism types of *n*-substructures.

• We add monadic NIP to a question of Macpherson.

Conjecture

Let M be a homogeneous ω -categorical structure. The following are equivalent.

- *M is monadically NIP.*
- **2** The growth rate of M is at most exponential.
- *Age*(*M*) *is well-quasi-ordered by embeddability, i.e. there is no infinite antichain.*
 - We prove non-structure results: $(2) \Rightarrow (1)$ and a weak form of $(3) \Rightarrow (1)$, just assuming QE.

Monadic stability	Monadic NIP (Shelah)	Characterizations	Hereditary classes	Questions	References
0000	000000	000	00000	0	

The theorem

Theorem (B, Laskowski)

Suppose M has QE and is not monadically NIP. Then

- the growth rate of M is at least (n/k)! for some $k \in \mathbb{N}$
- *e* there is some expansion M^{*} of M by ℓ unary predicates with Age(M^{*}) not well-quasi-ordered

<ロト < 得ト < ヨト < ヨト = ヨ = のへの

• No uniform bounds on k, ℓ .

Monadic stability
0000Monadic NIP (Shelah)
0000Characterizations
000Hereditary classes
0000QuestionsReferences
o

CODING FINITE GRAPHS

- We want to encode bipartite graphs with *n* edges and *n* vertices in each part in *O*(*n*)-substructures of a unary expansion of *M*.
- By our characterization, if *M* is not monadically NIP, it admits a pre-coding configuration.
- Shelah showed how to then code bipartite graphs in an unspecified unary expansion.
- You only need to name the "columns" of the pre-coding configuration, which lets you recover the "rows" from any element [2].
- If ψ(x, y, z) witnesses coding, we want to ensure ψ behaves the same in our finite structures as in C.
- We keep track of which elements are needed to witness (the failure of) quantifiers in ψ so we can include them in our finite structures.

Monadic stability	Monadic NIP (Shelah)	Characterizations	Hereditary classes	Questions	References
0000	000000	000	00000	•	

QUESTIONS

Question

Can we give uniform bounds on k and ℓ in the last theorem? In particular, can we get rid of ℓ ? Can the linear decomposition be refined to a tree decomposition? [1]

Question

Can the quantifier-elimination for mutually algebraic theories be generalized to monadic stability?

Question

Is there a tree-decomposition for monadically stable structures more suited to finite combinatorics? Does monadic stability imply low VC-density, i.e. $vc(\phi(\bar{x}; \bar{y})) = |\bar{x}|$? Is a hereditary graph class monadically stable iff it is definable in a unary expansion of a nowhere-dense class? [3]

Monadic stability	Monadic NIP (Shelah)	Characterizations	Hereditary classes	Questions	References
0000	000000	000	00000	0	

References I

- John T Baldwin and Saharon Shelah, Second-order quantifiers and the complexity of theories., Notre Dame Journal of Formal Logic 26 (1985), no. 3, 229–303.
- [2] Achim Blumensath, Simple monadic theories, Habilitation, 2008.
- [3] Jaroslav Nešetřil, Patrice Ossona de Mendez, Roman Rabinovich, and Sebastian Siebertz, *Classes of graphs with low complexity: the case of classes with bounded linear rankwidth*, European Journal of Combinatorics 91 (2021), 103223.
- [4] Saharon Shelah, *Monadic logic: Hanf numbers*, Around classification theory of models, 1986, pp. 203–223.
- [5] Pierre Simon and Szymon Toruńczyk, Ordered graphs of bounded twin-width, arXiv preprint arXiv:2102.06881 (2021).